If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+6w-200=0
a = 2; b = 6; c = -200;
Δ = b2-4ac
Δ = 62-4·2·(-200)
Δ = 1636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1636}=\sqrt{4*409}=\sqrt{4}*\sqrt{409}=2\sqrt{409}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{409}}{2*2}=\frac{-6-2\sqrt{409}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{409}}{2*2}=\frac{-6+2\sqrt{409}}{4} $
| 9n-7+6=-10 | | 15.91=0.50x+4.41 | | 3x+5x+2=80 | | 3x+3x+4=328 | | 4x^2-35x+9=0 | | W^2+3w-100=0 | | 13–4x=1–x | | 0.5x+0.2(18-x)=3.6 | | x=−152/2 | | (x+9)^3/2=64 | | 3x−5=2x+6 | | x^2-15=-6x | | 1/9(3t-5)=t+5/18 | | 1-x+3x=9 | | j+67=180 | | 4x=2x+20-6 | | 2x-1=(-3) | | 4b–9b–13–6+16b=1–8+6b+5b–12 | | y÷7-6=6 | | 1.5/3=y/10 | | F(x)=9x-10^6x+18 | | 5(4-2l)=7(3+l) | | 3/5=q/5 | | 38+f=180 | | F(x)=10/5x-3 | | 2(5x+12)=2x-3 | | 4x^2-3=x^2-7x | | 5x+1+62=18x+11 | | 3x-15=7+12x | | (3y/4)-(y/5)=6 | | |x-π^2|=1/2 | | 9x-10+83=127 |